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ABSTRACT 

 
The finite element method has been routinely used to calculate the image stresses of 

dislocation segments. When these segments intersect with surfaces, the image stresses at the 
surfaces diverges singularly. At the presence of these singularities, both convergence and 
accuracy of using the finite element method need to be examined critically. This article 
addresses these issues with the aim toward the application of dislocation dynamics 
simulations in thin films. 

 
INTRODUCTION 
 

Dislocations in a finite medium have image stresses [1]. Unlike electrostatic systems, the 
image stress of dislocations can not be straightforwardly obtained by simple image 
superposition. It is generally recognized that these image stresses play important roles in the 
dislocation behavior in finite sized systems such as thin films. In recent years, the 
development of discrete dislocation dynamics simulation [2-3] has made the simulation of 
thin film plasticity possible, presuming the image stresses can be calculated accurately and 
efficiently. Typically, the image stresses are calculated using the finite element method 
(FEM), which is then coupled with a dislocation dynamics method [4-7]. When dislocations 
intersect with surfaces, the image stresses at the surfaces diverge singularly. At the presence 
of these singularities, both convergence and accuracy of using the FEM need to be examined 
critically. This article addresses these issues by performing systematic FEM calculations in 
simplified systems and to compare with analytical solutions.   

 
METHODOLOGY  
 

The FEM is a standard method to solve boundary value problems [8]. The problem being 
concerned here is the following: given the elastic stress field of a dislocation segment in an 
infinite medium, find the elastic field of the dislocation segment in a finite body with a 

stress-free boundary. The solution takes the form img
ijij σσ +∞ , where the first term is the 

stress in the infinite medium, and the second term is the image stress due to the boundary. 
The image stress can be obtained by FEM through solving the boundary value problem so 
that the surface traction j

img
ij nσ cancels the original traction jij n∞σ on the surface, where jn is 

the component of the normal vector to the surface.  
 

 
 



 
Figure 1. A schematic view of the setup of the 
calculations. The thin slab has one free surface 
at the top perpendicular to the z direction. The 
infinite dislocation is perpendicular to the free 
surface.  

 
The system being studied is a thin slab with one free surface at the top perpendicular to 

the z direction, as shown in figure 1. All calculations are done with the dimensions of the 
slab being 300x300x60 angstroms along x, y, and z directions respectively. An infinite 
dislocation is located near the center of the slab. It is perpendicular to the free surface.  Its 
location at the free surface is shifted by (+M/4,+M/4) along x and y directions, where M is 
the mesh size. The FEM code used in the calculations utilizes both direct and conjugate 
iterative solvers. The later is shown to be much more efficient with large systems containing 
thousands of elements and more. Homogenous cubic (i.e., brick) meshes are used 
throughout the calculations. Mesh sizes vary from 6 down to 0.86 angstroms. The smallest 
mesh that can be used is limited by the largest number of elements a single processor can 
handle. The largest calculation contained 6108.12 x  number of elements and the memory 
usage was nearly 20 giga bytes.   

The boundary condition at the free surface is the traction free boundary condition 
mentioned earlier. Fixed displacement boundary condition is applied at the four side 
surfaces. Two types of boundary conditions are applied at the bottom surface. One is the 
fixed displacement boundary condition, which is defined as the type I boundary condition. 
The other is the application of the known analytical stress boundary condition for a semi-
infinite medium. The analytical image stress field for an infinite dislocation perpendicular to 
the free surface in a semi-infinite medium was worked out by Honda [9]. One then 
superimposes Honda’s solution with the infinite segment stress field and applies the total 
stress field at the bottom surface. We define this as the type II boundary condition.  

The results to be presented next are the image stress values solved by the FEM along the 
dislocation line inside the slab. The stresses are calculated at the Gaussian points. For 
simplicity, only the stresses at 1 Gaussian point is sampled which results in constant stresses 
for each element. Thus, for any point in space, we find out the element where the point 
resides, and use the element stresses as the calculated stresses at the point.  

 
RESULTS AND DISCUSSIONS 
 

The first set of calculations is done for the slab of 300x300x60 angstroms with the type II 
boundary condition. The dislocation Burgers vector is along <100>. The only non-zero 
image stress component on the dislocation line is yzσ , noted asσ . The stresses are shown as 

scaled values with respect to the shear modulus, and they are calculated at positions with 0.5 
angstroms apart from each other. The first point is 0.5 angstroms below the free surface. The 
Poisson ratio is 0.35 and the Burgers vector is 2.86 angstroms. Figure 2 shows the image 
stresses calculated by the FEM method with type II boundary condition at the bottom 
surface and the analytical values, where the same results are plotted differently along the x 
axis. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The FEM calculation of the image stresses along the dislocation line. As a 
comparison, the solid line without symbols is obtained from the analytical solution. For the 
rest lines with symbols, each corresponds to a different mesh size. The mesh sizes are 6, 3, 
2, 1, 0.86 angstroms respectively. (a) Linear plots in x and y; (b) logarithmic plot in x and 
linear plot in y. Type II boundary condition is applied at the bottom surface.  

 
Figure 2(a) is plotted in linear scale and 2(b) in logarithmic scale in order to view the data 
close to the free surface more clearly. Along y axis, linear scale is used for both (a) and (b). 
From the analytical solution, one sees that the image stress close to the free surface is 
enormous, almost half of the shear modulus of the material being considered. This suggests 
a potentially important role the image stress may play at the end of the dislocation close to 
the free surface. This effect can manifest itself into important significance to affect the 
overall dislocation behavior. The FEM calculations do show convergence as the mesh size is 
decreased. However, even with the smallest mesh possible, the values close to the surface 
have a rather large systematic error compared to the analytical value. The farther away from 
the free surface, the faster the results converge and the better agreement with the analytical 
values. This is expected since the image stress varies as 1/r from the free surface.  

 
 

Figure 3. Comparison of type I and type II boundary 
conditions at the bottom surface. The line with square 
symbols is obtained using type I boundary condition and 
the line with square symbols is obtained using type II 
boundary condition. The solid line without symbol is the 
analytical result. The FEM calculations are done with the 
mesh size of 0.86 angstroms.  
 
 
 

 
Similar calculations are done for type I boundary condition at the bottom surface. Figure 

3 shows the comparison between the two types of boundary conditions and the analytical 



results. The results are plotted for the multiplication of the stress and the distance from the 

free surface, i.e.,
µ

σ z⋅
, instead of 

µ
σ

. The analytical result is a straight line because the 

stress varies as 1/r from the free surface. The type II boundary condition results agree well 
with the analytical ones except when approaching the free surface. The type I boundary 
condition results show rather large deviation from the analytical solution. This indicates a 
boundary effect due to the bottom surface. However, the results using type I and II boundary 
conditions become identical within about 8 angstroms from the free surface. This means that 
the boundary condition at the bottom surface has no effect to the results close to the free 
surface. This means that the image stress close to the free surface is largely determined by 
the free surface only.  

 
CONCLUSION 
 

The image stresses of a dislocation in a finite medium are calculated using the finite 
element method. The results are compared to the analytical solution. Although the finite 
element method results indicate convergence towards the analytical solution, the mesh sizes 
required to achieve the satisfactory convergence would be too small for the practical 
application of the FEM in dislocation dynamics simulation. Although it is a fundamentally 
sound and generally effective approach to couple the FEM with the dislocation dynamics 
simulations to deal with image stresses, the accuracy of the method is largely limited by the 
treatment of the singular stress field at the intersection of the dislocation segment and the 
surface of the boundary. As shown in the present paper, by refining mesh size is not 
satisfactory for practical applications of the dislocation dynamics simulations. We can 
conclude that it is highly unrealistic to enforce the rigorous boundary conditions of 
dislocation dynamics simulations in finite systems by using the finite element method alone. 
To overcome this difficulty, we have pursued a hybrid method in which the general 
analytical solutions of dislocation segments in a semi-infinite medium are used to treat the 
singular part of the image stress field. The moderate non-singular part of the image stress 
field of dislocation segments can then be treated with the finite element method using much 
coarser meshes. The effectiveness of this approach is being studied [10]. 
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